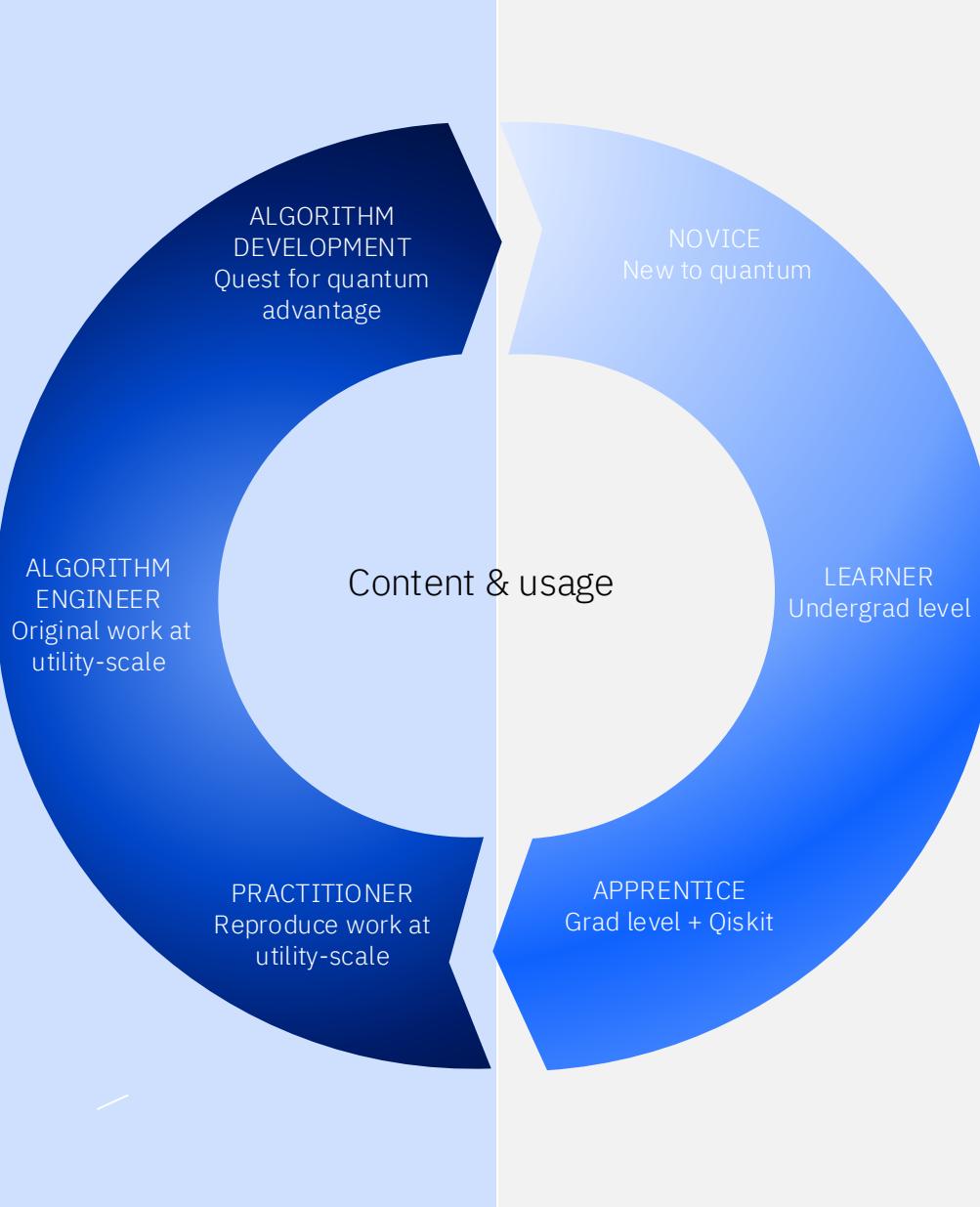


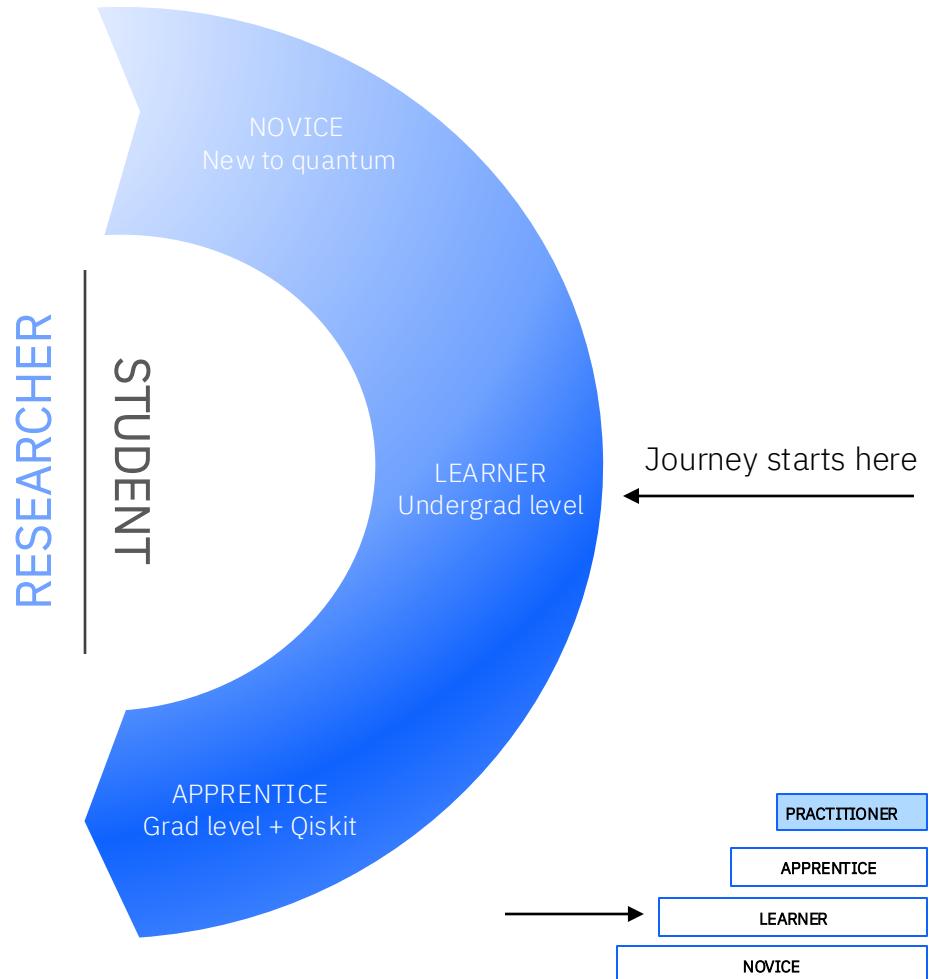
Road to Practitioner (R2P) Program


A curated learning journey from novice to practitioner

QIC adoption stages

RESEARCH PHASE

Algorithm
Engineering



LEARNING PHASE

Quantum Computing
Education

Road to Practitioner

In a Nutshell

Journey to become practitioner

- **Cohort-Based:** A class of peers encouraging collaborations and peer support and fostering the organic development of local communities.
- **Structured Learning Journey:** Two phases with a total of six units, integrating theory and hands-on experiences.
- **Hands-On Learning:** Emphasis on practical experience thanks to exercise sessions, code explanations and coding assignments.
- **Capstone Project:** Team-based coding project focused on applying on use cases of interest the lessons learned during the program.
- **Modular and Flexible:** Units and lectures can be adapted to the audience interests providing a more tailored experience.
- **Complementary Self-Paced Learning:** State-of-the-art digital education content from the IBM Quantum Learning page complement each lecture.
- **Guided Support:** Office hours and dedicated mentorship channels to assist learners throughout the program.
- **Solid foundation for R2U:** A learning journey designed to lay the foundational knowledge needed for the Road to Utility (R2U) program.

Road to Practitioner

Program Overview

Phase 0 Activation workshop

Unit 0: Intro to Quantum Computing

Goal: Create a foundational knowledge of quantum computing principles and tools as well as IBM role and offering in this domain.

Phase 1 Quantum computing basics

Unit 1: Qiskit Basics

Goal: Develop a first hands-on experience with quantum programming using Qiskit.

Unit 2: Quantum Algorithm I

Goal: Provide an overview of the historically most important quantum algorithms.

Unit 4: Quantum Computing: Tools and Techniques

Goal: Familiarize with Qiskit tools and quantum workflows.

Phase 2 Towards utility-scale

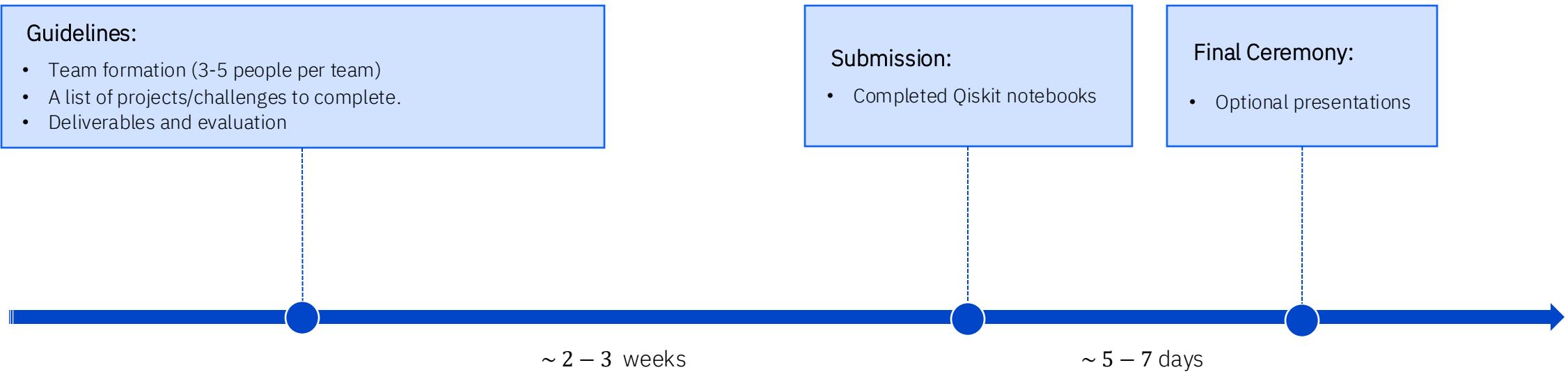
Unit 3: Quantum Algorithm II

Goal: Develop a solid understanding of important quantum algorithms.

Unit 5: Integrating Classical and Quantum computing

Goal: Explore domain-specific applications of quantum computing.

Unit 6: Capstone project


Goal: Apply the learned concepts to a team-based research project.

Road to Practitioner

Capstone Project

Objectives:

- Learn Qiskit, its capabilities and tools
- First hands-on experience with algorithms poised for quantum advantage

Road to Practitioner Curriculum

	<p>Unit 0: Activation Workshop</p> <p>Theory</p> <ul style="list-style-type: none">• R2P program overview• Intro to quantum computing• Towards quantum advantage• Intro to Qiskit SDK• IBM Quantum Platform• IBM Quantum Learning• DEMO Composer <p>Hands-on Qiskit</p> <ul style="list-style-type: none">• Install Qiskit and create an IBM account• Run the first circuit: Hello World	<p>Unit 1: Qiskit Basics</p> <p>Theory</p> <ul style="list-style-type: none">• The software stack• Algorithm Anatomy: Qiskit Patterns• Qiskit Addons and Functions• Software performance: benchmarking <p>Hands-on Qiskit</p> <ul style="list-style-type: none">• Qiskit Patterns• Qiskit Code Assistant• Scaling the GHZ state to 100 qubits• Encodings and Ansatze• IQP platform and manage jobs	<p>Unit 2: Quantum Algorithms I</p> <p>Theory</p> <ul style="list-style-type: none">• Overview of Variational algorithms:<ul style="list-style-type: none">• Case studies: VQE, QAOA• Overview of QML and data encoding methods• Limitations <p>Hands-on Qiskit</p> <ul style="list-style-type: none">• VQE• QAOA• Quantum Kernel Estimation
<p>Unit 3: Quantum Computing: Tools and Techniques</p> <p>Theory</p> <ul style="list-style-type: none">• Optimizing circuits: Transpilation• Dealing with noise: Overview of different ES and EM techniques (DD, Twirling, REM, ZNE)• Differences with error correction <p>Hands-on Qiskit</p> <ul style="list-style-type: none">• Preset and Custom Pass Manager• AI Transpilation service• Comparing results different ES and EM techniques (DD, Twirling, REM, ZNE)	<p>Unit 4: Quantum Algorithms II</p> <p>Theory</p> <ul style="list-style-type: none">• Simulating the dynamic of a Ising model (spin chain + Trotterization)• Sample based methods: SQD/KQD/SKQD <p>Hands-on Qiskit</p> <ul style="list-style-type: none">• Hamiltonian simulation (Ising model with 70 qubits)• Time evolution (Trotterization)• SQD for H₂O molecule• Qiskit addons	<p>Unit 5: Integrating Classical and Quantum computing</p> <p>Theory</p> <ul style="list-style-type: none">• Quantum Centric Supercomputing• Programming models• Workloads management (Slurm)• Qiskit Serverless• Mid-circuits measurements <p>Hands-on Qiskit</p> <ul style="list-style-type: none">• Dynamic Circuits for Utility Scale applications	<p>Unit 6: Capstone Project</p> <p>Teamwork</p> <p>Complete a project in cutting edge domains:</p> <ul style="list-style-type: none">• Quantum diagonalization• Quantum optimization• Quantum simulations <p>Hands-on Qiskit</p> <p>Implement the project and run it on hardware. Submission includes:</p> <ul style="list-style-type: none">• Jupyter notebook• Presentations (slides)

Road to Practitioner

Prerequisites

Quantum mechanics basics

- Basics of quantum states and measurements
- Fundamental quantum principles: superposition, entanglement, interference
- Basics of linear algebra: matrix multiplication
- Basics of complex numbers and probability concepts

Recommendations:

- Qiskit YouTube: [What is Quantum Computing?](#)
- [Course: Basics of Quantum information](#)
- Book: Quantum Computation and Quantum Information by Michael A. Nielson and Isaac L. Chuang – first two chapters

Python programming basics

- Variables, data types, and control structures (loops, conditionals)
- NumPy arrays and basic mathematical operations
- Functions and object-oriented programming concepts
- Experience with Jupyter notebooks
- Ability to install and manage Python packages (pip, conda)

Recommendations:

- [Project Jupyter](#)
- [IBM Quantum guide: Online lab environments](#)
- [Visual Studio Code software](#)

IBM Quantum account and Qiskit installation

- Installing Qiskit
- Creating an IBM Quantum account

Recommendations:

- [Install Qiskit](#)
- [Set up your IBM Cloud Account](#)

Course readiness & commitment

- Weekly time commitment: 1.5 hour lectures + coding assignments (variable time)
- Motivation to complete all assignments and final project/challenge

Road to Practitioner

Schedule (Q1 – Q2 2026)

February	March	April
<ul style="list-style-type: none">• Unit 0 Activation workshop + Unit 1 Qiskit Basics Lecture 1: Introduction to Qiskit 3rd of February• Unit 2 Quantum Algorithms I Lecture 1: Variational Algorithms 10th of February• Unit 2 Quantum Algorithms I Lecture 2: QML 17th of February• Unit 3 Quantum Computing: Tools and Techniques Lecture 1: Transpilation 24th of February	<ul style="list-style-type: none">• Unit 3 Quantum Computing: Tools and Techniques Lecture 2: Error Mitigation and Suppression 3rd of March• Unit 4 Quantum Algorithms II Lecture 1: Hamiltonian Simulation 10th of March• Unit 4 Quantum Algorithms II Lecture 2: Sample-based Diagonalization Algorithms 17th of March• Unit 5 Integrating Classical and Quantum Computing Lecture 1: Hybrid Workflows + Unit 6 Capstone Project: Start 24th of March	<ul style="list-style-type: none">• Unit 6 Capstone Project: Submission 24th of April• Unit 6 Capstone Project: Final Ceremony 28th of April